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The scattering of argon atoms from a hydrogen saturated tungsten �100� surface was measured almost two
decades ago by Schweizer et al. �Surf. Sci. 249, 335 �1991��. Angular distributions with rainbow features were
measured as a function of surface temperature, incident kinetic energy and incident angle. In this paper, we
show that a recently formulated classical Wigner theory of atom surface scattering accounts well for the
measured distributions and their properties. Parameters were fit to a corrugated Morse potential, with Ohmic
friction. Ab initio quantum chemistry computations verify that the fitted Morse potential parameters are in
qualitative agreement with computed Ar-W and Ar-H-W potentials of interaction.
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I. INTRODUCTION

The scattering of atoms and molecules from surfaces is
seemingly well understood. So is the phenomenon of rain-
bow scattering. The vanishing of the derivative of the clas-
sical deflection function with respect to the impact parameter
leads to peaks in measured angular distributions. In their
1991 review of rainbow scattering, Kleyn and Horn1 note
that the concept of rainbow scattering from surfaces was es-
tablished forty years ago by McClure.2 Given this long pe-
riod of time and the fact that rainbow scattering from sur-
faces has been observed in many experiments,3–12 and
considered in various theoretical investigations,11,13–20 one
may well question the need for another theory paper on this
topic.

Surprisingly, even though the fundamental physics under-
lying rainbow scattering is well understood,1 experiments
have raised many questions which remained unanswered as
exemplified by the detailed investigation of the scattering of
Ar from 2H-W�100�. The measurements were made almost
twenty years ago by Schweizer et al.,10 but a quick search
shows that their intriguing results have not been analyzed in
any depth since then. They measured both diffraction and
rainbows, here we concentrate on the rainbows, that is on the
classical scattering. Their results were puzzling to them.
They detected rainbow scattering at low incidence angles
�−30°�, but these disappeared when the incidence angle was
increased to −60°, where the scattering was quasispecular. At
low incidence angles the measured distribution was quite
asymmetric about the specular angle, but the asymmetry be-
came weaker as the energy of the incident particle was in-
creased. At high incidence angles, the asymmetry disap-
peared. Not only have these qualitative puzzles remained
unanswered to date, no one has attempted to fit their results
to a simple classical model such as the washboard model of
Tully.16 The theory for interaction of a projectile with surface
phonons and its effect on the scattering distribution, energy
transfer, surface temperature effects is also a well-studied
topic.21–28 However, almost all papers have been limited to
quasispecular scattering.

During the past few years we have developed a classical
perturbation theory for the �in-plane� scattering of heavy at-
oms from surfaces. The theory includes both the effects of

surface corrugation as well as interaction with surface
phonons. In Ref. 29 we provided the perturbation theory
framework and showed how the theory leads naturally to a
description of rainbow scattering and its dependence on the
angle of incidence and the surface temperature. We also
compared the theory with numerically exact simulations and
showed that it provides a reliable description of the scatter-
ing dynamics in the limit of weak corrugation. The theory
was improved in Ref. 30, where the model used was explic-
itly translationally invariant and the theory was developed to
include an analysis of the energy loss of the incident particle
to the surface. In both these papers, the corrugation was
treated in terms of a single sine �sin� 2�x

l �� �or cosine� term
whose period was the lattice length l of the surface. Such a
description leads to symmetric scattering about the specular
angle. In the third paper in the series31 we showed that the
noticeable asymmetry in the angular distribution measured in
quite a few cases, may be attributed to the inclusion of a
higher order Fourier component �sin� 4�x

l ��. Analytic expres-
sions were derived for the angular distribution in terms of a
Morse potential model for the interaction of the incident
atom in the vertical direction. This theory improved upon the
washboard model of Tully,16 since it is no longer necessary
to consider only hard wall potentials.

The central theme of the present paper is to show that our
classical perturbation theory may be used to model and ex-
plain the measured results for rainbow scattering of Ar from
the hydrogen covered tungsten surface. We will show that a
Morse potential for the vertical interaction with a well depth
of 60 meV with weak corrugation and weak coupling to the
phonon bath suffices for a full description of the experimen-
tally measured results. We show that as the angle of inci-
dence is increased, the distance between the rainbow angles
decreases so that at high incidence angles, the coupling to the
phonon bath “washes out” the rainbow structure and one
remains with a single quasispecular peak. The rainbow angle
distance decreases also as the incidence energy is increased,
but the contribution of the second-order term in the Fourier
expansion vanishes even faster leading to the disappearance
of the asymmetry in the angular distribution.

For the sake of completeness, we review briefly in Sec. II
the classical scattering theory as developed in Refs. 30 and
31. The analysis of the experimental results of Schweizer et
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al. is presented in Sec. III. We provide details of a simplified
ab initio computation which suggests that the parameters we
used for fitting the experimental results are reasonable and
characteristic of the Ar-W and Ar-H-W interaction poten-
tials. The paper ends with a discussion in Sec. IV.

II. THEORY OF RAINBOW SCATTERING

A. The model

In this section we briefly review the results derived in
Ref. 31. The potential of interaction V�x ,z� �with x , z being
the horizontal and vertical coordinates, respectively� of the

incident particle whose mass is M has two components. V̄�z�
is the potential of interaction in the vertical direction �the
distance between the incident atom and the surface�. The
corrugation potential has two Fourier components so that the
full potential is modeled as

V�z,x� = V̄�z� + V̄��z��h1 sin�2�x

l
� + h2 sin�4�x

l
�� .

�2.1�

h1 and h2 are the respective corrugation heights for the first-
and second-order Fourier terms and the prime denotes differ-
entiation with respect to the argument.

Assuming small fluctuations due to the surface phonons
and modeling them in terms of harmonic baths, we have that
the Hamiltonian is

H =
px

2 + pz
2

2M
+ V�z,x� +

1

2	
j=1

N �pjz
2 + � jz

2�xjz
−

cjz

M

� jz
2 V̄��z��2�

+
1

2	
j=1

N �pjx
2 + � jx

2�xjx
−

cjx

M

� jx
2

l

2�
sin�2�x

l �g�z��2� ,

�2.2�

where the horizontal and vertical bath degrees of freedom are
characterized by the mass weighted momenta and coordi-
nates pji

, xji
, j=1, . . . ,N; i=x ,z. Translational invariance

of the model is assured since the term coupling the horizon-
tal motion to the respective phonon bath is periodic in the
horizontal coordinate. The function g�z� vanishes at large
vertical distance so that when the particle is far from the
surface it does not interact with it. The bath Hamiltonian �in
mass weighted coordinates and momenta� is defined to be

HB =
1

2 	
j=1, i=x,z

N

�pji
2 + � ji

2xji
2� . �2.3�

In the continuum limit the bath modes are described in terms
of the spectral densities

Ji��� =
�

2 	
j=1

N cji
2

� ji

��� − � ji
�, i = x,z �2.4�

and associated friction functions

�i�t� =
2

�
�

0

�

d�
Ji���

�
cos��t�, i = x,z . �2.5�

We assume throughout that the friction functions are Ohmic,
that is

�i�t� = 2�i��t�, i = x,z . �2.6�

B. The angular distribution

The formal �classical limit� expression for the angular dis-
tribution in the Wigner representation takes the form

P��� = lim
t→�
�

−�

�

�
j=1, i=x,z

N dpji
dxji

2�	
�

−�

�

dpxdpzdxdz
B,W�p,x�

�
S�px,pz,x,z���� − tan−1� px�t�
pz�t�

�� �2.7�

where the notation pz�t� , px�t� stands for the classical time
evolution. Here 
S�px , pz ,x ,z� is the Wigner representation of
the incident wave packet and 
B,W�p ,x� is the Wigner repre-
sentation of the thermal bath density, taken in the classical
limit.

The incident particle at the time −t0 is assumed to be
defined by an incident Gaussian wavepacket 
�� centered
about the incident momenta px0 and pz0 and the coordinates
x0 and z0. The incident energy is thus

E0 =
px0

2 + pz0
2

2M
. �2.8�

The initial vertical momentum is taken to be negative, that is
pz0
0. The incident scattering angle is by definition

�0 = tan−1� px0

pz0
� . �2.9�

We will assume that the spatial width of the incident Gauss-
ian wavepacket is sufficiently large that one can replace the
Gaussian terms for the particle momenta with Dirac delta
functions, that is the initial momenta have the unique values
px0 and pz0. One can then also integrate over the vertical
coordinate, so that

P��� =
1

l
�

0

l

dx lim
t→�

�
−�

�

�
j=1, i=x,z

N dpji
dxji

2�	

B,W�p,x�

���� − tan−1� px�t0�
pz�t0�

�� . �2.10�

The horizontal coordinate is defined as the impact parameter,
so that the angular distribution is an average of an impact
parameter-dependent angular distribution. The argument of
the Dirac delta function is the �phonon-dependent� deflection
function.

The final particle momenta are obtained by using classical
perturbation theory in which the zeroth-order motion is that
of the particle moving in the absence of coupling to the
phonon bath and vanishing corrugation. It is then a matter of
some algebra to find the explicit expression for the angular
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distribution: the integration over the bath variables is ef-
fected as in Appendix A of Ref. 30. One finds that the angu-
lar distribution is given by the expression

P��� =
1

l
�

0

l

dx
1


��2�x�
exp�−

�� − �d�px0,pz0,x,�x,�z��2

�2�x�
� .

�2.11�

where the deflection function is

�d�px0,pz0,x,�x,�z� = − �0 − K1�px0,pz0�sin�2�

l
x�

− K2�px0,pz0�sin�4�

l
x� − ��1�x�;

�2.12�

the rainbow angle functions are found to be

K1�px0,pz0� =
2�

lpz0
h1�

−t0

t0

dtV̄��zt�cos��xt� �2.13�

K2�px0,pz0� =
4�

lpz0
h2�

−t0

t0

dtV̄��zt�cos�2�xt�; �2.14�

and the horizontal frequency is defined as

�x =
2�

l

px0

M
. �2.15�

The friction induced angular shift of the deflection function
is given in terms of the energy losses to the bath and the
function g�z� coupling the vertical motion to the phonon mo-
tion

��1�x� = tan��i0�� ��EB�
2E0

−
�x

2
�

−t0

t0

dtg2�zt�� . �2.16�

The average energy losses due to the vertical and horizontal
motions are temperature independent and given by the ex-
pression �note that the dimension of �x is time−1 while that of
�z is time3 /mass2�

��EB�z = M�z�
−t0

t0

dt�dV̄��zt�
dt

�2

�2.17�

for the vertical direction and

��EB�x = �� − cos�4�x

l
���x, �2.18�

where

�� = E0 sin2��i0��x�
−t0

t0

dt�g2�zt� +
1

�x
2�dg�zt�

dt
�2�

�2.19�

and

��x = E0 sin2��i0��x�
−t0

t0

dt cos�2�xt��g2�zt� +
1

�x
2�dg�zt�

dt
�2�

�2.20�

for the horizontal mode. It is of interest to note that the
horizontal energy loss to the phonons depends on the impact
parameter through the second-order Fourier term. The pho-
non interaction may thus lead to a phonon induced asymme-
try in the angular distribution. The impact parameter-
dependent variance of the angular distribution is

�2�x� =
tan2��i0�

�E0
� ��EB�

E0
+ �x�

−t0

t0

dtg2�zt�

��1 − 2 cos�4�

l
x���

+
�x

�E0
��

−t0

t0

dtg2�zt��1 +
cos� 4�

l x�cos�2�xt�
cos2��i0�

�� .

�2.21�

C. The angle-dependent energy loss

As shown in Ref. 30 one can use the same theory to
obtain an explicit expression for the joint final angle and
energy distribution. From this, one may derive an expression
for the final average energy at a given final scattering angle.
One finds

�E���� = �E0 − ���EB��l� +
2

�P���
�

��
�P��,x���1�x��l

�2.22�

where P�� ,x� is the final angular distribution at a given im-
pact parameter �it is the integrand of Eq. �2.11�� and the
brackets denote averaging over the horizontal coordinate

�f�l =
1

lP����0

l

dxf�x�P��,x� . �2.23�

It is instructive to note that the angular dependence of the
energy loss comes from the phonon induced shift of the de-
flection function ��1�x�. Roughly, if the shift is negative,
then the contribution is positive and vice versa. Furthermore,
if the dependence of the angular distribution on the impact
parameter is weak, then at the peak of the angular distribu-
tion, the final average energy is just identical to the differ-
ence between the incident energy and the energy lost to the
surface.

D. Morse oscillator model

As shown in Ref. 31 the theory given in the previous
section can be solved to a certain extent analytically when
one chooses the vertical potential to be the Morse oscillator
potential

RAINBOW SCATTERING OF ARGON FROM 2H-W�100� PHYSICAL REVIEW B 80, 115404 �2009�

115404-3



V̄�z� = V0�1 − exp�− �z��2 − V0. �2.24�

where V0 is the well depth and � is the Morse stiffness pa-
rameter. It is useful to define an energy-dependent frequency
associated with the Morse oscillator

�2 =
2�2Ez

M
=

�2pz
2

M2 ; �2.25�

an energy-dependent angular variable

cos��� = −
 V0

�Ez + V0�
, sin��� =
 Ez

�Ez + V0�
,

�2.26�

and the reduced frequency

�̄ =
�x

�
=

2�

�l

tan��i0�
 . �2.27�

One then finds that the analytical expressions for the rainbow
angle functions are

K1�E0,�i0� =
4�2h1�̄ cosh��̄��

l sinh��̄��
�2.28�

K2�E0,�i0� =
16�2h2�̄ cosh�2�̄��

l sinh�2�̄��
. �2.29�

Since the angle � ranges from � to � /2 as the vertical
energy increases from 0 to � one sees �provided that the

reduced frequency �̄ is on the order of unity or larger� that
the rainbow angle functions decrease monotonically as the
energy increases. Furthermore, the ratio of the second-order
rainbow function to the first-order rainbow function

K2�p0,�i0�
K1�p0,�i0�

=
2h2 cosh�2�̄��

cosh��̄��h1 cosh��̄��
�2.30�

also decreases as a function of energy. This implies that typi-
cally the asymmetry induced by the second-order term will
be smaller as the energy increases and is a key to understand-
ing some of the experimental results found for the scattering
of Ar on the hydrogen covered tungsten surface.

The energy loss in the vertical direction is then found to
be

��EB�z =
4M�z��2V0

2

15
� �cos4��� + 28 cos2��� + 16� − 15� cot����2 + cos2����

cos4��� � �2.31�

Specifying the function g�z� which couples the phonons to the horizontal motion to be

g�z� = exp�− 2�z� . �2.32�

one finds

1

2
�

−t0

t0

dtg2�zt� =
sin2���

�
�11 cos2��� + 4 − 3� cot����2 cos2��� + 3�

6 cos4��� � �2.33�

��
−�

�

dtg2�zt�cos�2�xt� =
2� sin2���sinh�2�̄��

3 cos4���sinh�2�̄��

��coth�2�̄���4�̄3 sin2��� + �̄�11 cos2��� + 4�� − 6�̄2 sin�2�� − cot����3 cos2��� +
9

2
��
�2.34�

�� =
M�̄2�x�l2

24�2 sin2����11 cos2��� + 4 − 3� cot����2 cos2��� + 3�
cos4��� �

+
M�x�l2

120�2 �6 cos4��� + 83 cos2��� + 16 − 15� cot����4 cos2��� + 3�
cos4��� � �2.35�

��x =
M�x�l2

60� cos4���sinh�2�̄��
cosh�2�̄�� · �4�̄5 sin4��� + �̄3 sin2����35 cos2��� + 20� + �̄�6 cos4��� + 83 cos2��� + 16��

−
M�x�l2

24� cos3���sinh�2�̄��
sinh�2�̄�� · �8�̄4 sin3��� + �̄2 sin����10 cos2��� + 29� + 3

4 cos2��� + 3

sin��� � �2.36�
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and this is all that is needed to compute the angular shift of
Eq. �2.16�; the variance as given in Eq. �2.21�; and thus the
angular distribution as given in Eq. �2.11�. The remaining
integration over the horizontal coordinate needs to be carried
out numerically.

III. THEORY OF Ar-2H-W(100) SCATTERING

A. Experimental fits

There are six free parameters in the corrugated Morse
oscillator model—the well depth of the Morse oscillator V0;
the Morse oscillator stiffness parameter �; the corrugation
parameters h1 and h2 and the Ohmic friction coefficients �x
and �z. The lattice length l=4.6 Å is known10 and the mass
of Ar is M =39 amu. One may be cynical and claim that
almost anything can be fit with a six parameter theory, how-
ever we will show how the extensive experimental results do
not give much leeway in determining them.

Our starting point is Fig. 8 of Ref. 10. One observes an
asymmetry in the angular distributions, but it is not very
strong. This implies that the second-order corrugation height
will be small as compared with the first-order corrugation
height—h2 /h1�1. To zeroth order then one should consider
the incident energy and angle dependence of the first-order
rainbow function K1. From the figure, one also observes that
at the angle of incidence of −30° and a surface temperature
of T=90 K, the distance between the rainbow angles de-
creases from a value of �23° at E0=65 meV to �11° at
E=220 meV. This implies that the rainbow angle function
K1 �see Eq. �2.28�� must be a decreasing function of the
energy. As noted in the previous section, this in turn implies

that the reduced frequency �̄�1. At the same time, the de-
cay of the rainbow function increases exponentially with the
magnitude of the reduced frequency. Therefore, the reduced
frequency cannot be too large. There is though a third piece
of information. From Fig. 14 of Schweizer et al. we know
that at the 60° angle of incidence, the rainbow structure dis-
appears, implying that the value of the rainbow function K1
at this angle must be smaller than its value at 30°. Since the

magnitude of �̄ is determined by the product �l �� is the
Morse potential stiffness parameter� these observations lead
to the conclusion that the product �l�2. With some fine
tuning we then determined that �l=2 is optimal and used this
throughout.

The same information helps in determining the Morse po-
tential well depth V0. As mentioned, the experiment shows
that the rainbow function decreases rather quickly with en-
ergy. This implies that the angle � must change rather rap-
idly with energy, as it is � which determines the energy
dependence of the rainbow function. The well depth must
thus be of the same order of magnitude as the energy at
which the rainbow function changes rapidly, which in turn
sets the value of V0�50 meV. In practice, we found that our
“best” fit of the data was obtained using V0=60 meV, and
this is the value used throughout this paper. �This is some-
what smaller then the value of 100 meV employed by Sch-
weizer et al.�. In addition, the actual measured magnitude of
the distance between the rainbow peaks sets the magnitude

of the primary corrugation parameter as h1�0.1 a.u., which
is approximately double the corrugation height used by Sch-
weizer et al. in their analysis. In practice we employed the
value h1=0.099 a.u.

We are thus left with the fitting of three parameters, the
friction coefficients and the second-order corrugation height
h2. From Fig. 12 of Ref. 10 we note that the experimentally
measured average energy lost to the surface is �7 meV at
the −30° angle of incidence and surface temperature T
=90 K. This sets the limits for the sum of the two friction
coefficients. Their ratio is obtained by noting that under all
conditions, the center of the measured angular distribution is
approximately specular. This implies that the friction induced
shift function ��1 �see Eq. �2.16�� must be small at all inci-
dence energies. This then led to the reduced values of the
friction coefficients �x /�0= .00267 �where �0=�
�2V0 /M�
is the harmonic frequency of the Morse potential� and
M2�0

3�z=0.00228. The second-order corrugation parameter,
is responsible for the asymmetry of the angular
distribution.31 It may thus determined by the asymmetry of
the measured angular distribution at the 30° angle of inci-
dence. Our optimized value was h2=−0.007 a.u. which we
note is indeed much smaller than the first-order corrugation
height.

Results for the angular distribution for �0=−30° and the
different incidence energies are presented in Fig. 1. The solid
circles are the experimental results adapted from Fig. 8 of
Ref. 10, the solid lines are the theoretical fits as obtained
with the parameter set described above. The incident ener-
gies are from bottom to top 65, 130, and 220 meV, respec-
tively �the distributions are displaced by 0.06 for the sake of
clarity�. Note that for the 65 meV case we plot on the figure
two different experimental distributions, the asterisks are
adapted from the bottom half of Fig. 12 of Ref. 10. The two

FIG. 1. �Color online� Energy dependence of the angular distri-
butions for a −30° angle of incidence and T=90 K. The solid
circles and asterisks are the experimental results adapted from Figs.
8 and 12 of Ref. 10. The plots from bottom to top are for the
incidence energies of 65, 130, and 220 meV, respectively, and have
been shifted by 0.06 for the sake of clarity. From bottom to top, the
normalized theoretical distributions have been multiplied by the
constant factors of 1, 1.1, and 1.25 so as to compare with the �un-
normalized� experimental results.
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experimental distributions are not identical, the one from
Fig. 8 has a larger rainbow peak for subspecular angles,
while the distribution of Fig. 12 has the larger rainbow peak
at superspecular angles. We believe that this provides a
rough indication of the experimental error in the angular dis-
tributions. In all of our fits the differences between them and
the experimental results are not substantially larger than the
differences between the two experimental distributions, im-
plying that given the published data and their uncertainty, our
fits are satisfactory.

Schweizer et al. also measured the angular distribution for
E0=27 meV. This is very low energy, where on the one
hand quantum diffraction effects are noticeable in the experi-
mental results and on the other hand at such low energies, the
perturbation theory we are using is no longer very accurate.
We have therefore omitted results for this low energy, even
though qualitatively our theory is reasonable.

As already discussed, the distance between the rainbow
angles decreases with decreasing energy. From Ref. 31 we
note that in the presence of weak asymmetry, the rainbow
angles are given by �K1+K2. These two values are plotted
as a function of the energy in Fig. 2 and compared with the
experimental values adapted from Fig. 11 of Schweizer et al.
One notices the good agreement. In this figure we added also
the lower rainbow angle for the low incidence energy of 27
meV.

Schweizer et al. also reported in their Fig. 10 the surface
temperature dependence of the angular distributions mea-
sured at �0=−30°, E0=65 meV and T=90, 140, 190, and
250 K. The theory is compared with the experimental results
in Fig. 3. The central feature of the four distributions �dis-
placed from each other by 0.03� is that the rainbow peaks are
broadened as the temperature is increased. This is predicted
from our theory since the variance of the distribution ��2�
increases linearly with the temperature. This broadening
smears out the rainbows and their asymmetry, the rainbow
peaks become less significant as the temperature is increased.

Perhaps the most puzzling aspect of the Ar-2H-W�100�
system was the drastic change in the angular distribution
with the angle of incidence. As shown in Fig. 14 of Ref. 10

when the angle of incidence is increased to −60° the rainbow
feature seems to disappear. One is left with a rather broad
bell shaped distribution which is quasispecular. As already
indicated in the previous section the reason for this is that the
rainbow angle functions decrease with increasing angle of
incidence. This is shown in Fig. 4 where we plot the depen-
dence of K1 and K2 on the angle of incidence at E0=65 and
110 meV. At the higher energy, K1 decreases from a value of
9.7° at �0=−30° to 5.5° at �0=−60°. Similarly, for E0
=65 meV, K1 decreases from a value of 12.4° at �0=−30° to
9.7° at �0=−60°. This decrease in the distance between the
rainbow angles then leads to the unimodal peaks shown in

FIG. 2. �Color online� Incident energy dependence of the rain-
bow angles. The solid lines are the theoretical estimates, the solid
circles are the experimental results adapted from Fig. 11 of Ref. 10.

FIG. 3. �Color online� Temperature dependence of the angular
distributions for a −30° angle of incidence and 65 meV incidence
energy. The solid circles are the experimental results adapted from
Fig. 10 of Ref. 10. The plots from bottom to top are for the surface
temperatures of 90, 140, 190, and 250 K, respectively, and have
been shifted by 0.03 for the sake of clarity. From bottom to top, the
normalized theoretical distributions have been multiplied by the
constant factors of 1, 1.1, 1.14, and 1.25 so as to compare with the
�unnormalized� experimental results.

FIG. 4. �Color online� Incident angle dependence of the rainbow
functions. The solid lines are for K1, the dashed lines are for K2.
The upper solid line is for E0=65 meV, the lower solid line is for
E0=110 meV. Likewise the upper dashed line is for E0

=110 meV, while the lower dashed line is for E0=65 meV. For
further details see the text.
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Fig. 5 and compared with the experimental distributions.
Note especially that when E0=65 meV, the theoretical an-
gular distribution is quite flat about the maximum, the width
is due to the two rainbow angles which are smeared due to
the coupling to the phonons. In fact, if one would lower the
temperature, we predict that the angular distribution even at
this large angle of incidence would again become bimodal,
reflecting the rainbow scattering. The theoretical full widths
at half maximum of the theoretical angular distributions
shown in the figure are 34° and 21° for the low and high
energies, respectively, these should be compared with the
respective experimental values of 36° �3° and 25° �2° as
reported in Fig. 15 of Schweizer et al.

We also note from Fig. 4 that the absolute magnitude of
K2 decreases with increasing angle of incidence, faster than
K1. For �0=−30° K2=0.9° for E0=65 meV and 0.6° for E0
=110 meV. However, when the angle of incidence is �0=
−60° the respective values of K2 are 0.2° and 0.06°. It is thus
not surprising that the asymmetry almost disappears at the
larger angle of incidence.

The last challenge presented by the experimental data is
the final angular dependence of the measured energy loss.
Comparison between experiment and theory is shown in Fig.
6. The agreement here is qualitative. The two lines coincide
more or less around the maximal region of the angular dis-
tribution where they also do not change much with the final
angle, however the theory does not account well for the de-
tails of the experimental measurement. Theoretically, far
away from the maximum of the distribution the theoretical
form is Gaussian. The logarithmic derivative of the Gaussian
is linear, therefore for small and large angles one notes a
linear increase in the average final energy with increasing
final angle. This linearity is not found in the experimental
data. The overall average energy loss is though well repro-
duced by the theory.

B. Quantum chemical methods

1. Computational methodology

To ascertain whether the fitted model parameters are sen-
sible it is also of value to gain independent estimates of the
well depth and stiffness parameter of the vertical potential.
For this purpose we undertook ab initio computations of the
potential energy between an Ar atom and a hydrogen atom
bound collinearly to a tungsten atom and the same for the
interaction of an Ar atom with an isolated tungsten atom. The
accurate calculation of these potentials is not a routine task
because correlated methods with large basis sets are manda-
tory for a reliable account of the van der Waals interaction.
As an additional challenge, the rather high nuclear charge of
the tungsten atom �Z=74� calls for a relativistic description.
For meeting these requirements we pursued two different
routes, described below.

�1� As an effective and cost saving but still accurate
means to compute potential energy curves, we employed the
approximate coupled cluster doubles model RICC232–34 from
the TURBOMOLE program package.35 For hydrogen and ar-
gon, augmented correlation consistent basis sets with quin-
tuple zeta quality and polarization functions
�aug-ccpV5Z�36,37 were used. For the tungsten atom, the
Stuttgart relativistic energy consistent effective core
potential38 �ECP� with 14 valence electrons �5s, 5p, 5d, and
6s� was employed. A corresponding quadruple zeta basis
set with two sets of polarization functions �termed
ecp-60-mwb-QZVPP,39� from the TURBOMOLE basis set li-
brary was used for the valence shells of the tungsten atom.
Test calculations with more expensive tungsten valence basis
sets from the TURBOMOLE library, in particular the ecp-60-
mwb-QZV5f4g3h set, showed that the results from the ecp-
60-mwb-QZVPP basis set are essentially converged.

Molecular spin orbitals �MSOs� were obtained from unre-
stricted Hartree-Fock �UHF� theory. For all species under
investigation, symmetry restrictions from the C2v point group
were imposed. For the W¯Ar system, we chose two differ-

FIG. 5. �Color online� Energy dependence of the angular distri-
butions for a −60° angle of incidence and T=90 K. The solid
circles are the experimental results adapted from Fig. 14 of Ref. 10.
The plots are for the incidence energies of 65 and 110 meV, the
broader plot is at the lower energy. The normalized theoretical dis-
tributions at E0=65 and 110 meV have been multiplied by the re-
spective constant factors of 0.93 and 1.35 so as to compare with the
�unnormalized� experimental results.

FIG. 6. �Color online� Final angle dependence of the final aver-
age energy for the −30° angle of incidence and T=90°. The solid
circles are the experimental results adapted from Fig. 12 of Ref. 10.
The solid line is the theoretical result as obtained from Eq. �2.22�.
For further details see the text.
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ent sets of MSO occupations: the first one �� MSOs:
1–10a1, 1–4b1, and 1–4b2; � MSOs: 1–8a1, 1–3b1, and
1–3b2� formally corresponds to a tungsten atom with either
6s25d4 configuration with a 5D term symbol or to a 6s15d5

configuration with a 5D or a 5G term symbol. According to
Hund’s rules and assuming a 6s25d4 ground state configura-
tion for tungsten,40 the 5D term is supposed to be the lowest
one. The second occupation �� MSOs: 1–10a1, 1a2, 1–4b1,
and 1–4b2; � MSOs: 1–7a1, 1–3b1, and 1–3b2� represents
the nearly degenerate 7S term of tungsten which originates
from a 6s15d5 configuration with a half-filled 5d shell. In the
case of the �W-H�¯Ar system, an occupation 1–10a1, 1a2,
1–4b1, 1–4b2 �� MSOs�, and 1–8a1, 1–3b1, 1–3b2
�� MSOs� is chosen in accord with a X 6�+ ground state for
the W-H molecule. Such a ground state has been revealed by
correlated relativistic all-electron calculations.41

Auxiliary basis sets42,43 for the computation of the two-
electron integrals via the resolution-of-the-identity �RI� ap-
proach in the RICC2 calculations were taken from the TUR-

BOMOLE basis set library. Throughout, the 1s, 2s, and 2p
electrons of argon were treated as a frozen core in the RICC2
runs.

�2� To ensure that correlation of the tungsten core �in
particular the 4f electrons� does not have a drastic impact on
the dispersion energy, all-electron calculations were carried
out with the MOLPRO program package.44 The atomic natural
orbital relativistic correlation-consistent �ANO-RCC� basis
set of Roos et al.45 was used for the tungsten atom.
Second-order Douglas-Kroll-Hess kinematic relativistic
corrections46,47 to the one-electron integrals were included.
The final correlation treatment was done at the level of
coupled cluster singles doubles with perturbative triples cor-
rection �CCSD�T��.48 The one-particle basis sets were com-
prised either by �relativistic� HF molecular orbitals �MOs�
with open-shell occupations in accord with the unrestricted
HF occupations described above or pseudocanonical MOs
from the multiconfiguration self-consistent field program
MULTI.49,50 The pseudocanonical orbitals resulted from com-
plete active space self-consistent field �CASSCF� calcula-
tions with active spaces as follows: for the Ar/W potential,
we performed �6,10�-CASSCF calculations with 6 electrons
in 10 active orbitals. The active space was comprised by the
6s, 5d, and 6p orbitals of the tungsten atom �denoted
21–24a1, 4a2, 11–12b1, and 11–12b2 in the C2v point
group�. In the case of the Ar / �H-W� system, one additional
electron from the hydrogen led to a �7,10�-CASSCF. The
active space consisted of the bonding orbital between hydro-
gen and tungsten denoted as 6s�W�+1s�H�, the 5d, and the
6p orbitals of the tungsten atom �in the C2v point group with
the same notation as above�. In the CCSD�T� calculations
these active orbitals and the tungsten 4f orbitals were corre-
lated.

To arrive at interaction potentials which are approxi-
mately free from the well-known basis set superposition er-
ror, we carried out counter-poise corrections,51 throughout.
Within this scheme, the interaction potential is obtained as
the difference of the energy of the complete system and the
energies of the fragments as calculated using the basis sets of
the whole system

V�CPC��A − B��R� = EA,B�A − B��R� − EA,B�A��R�

− EA,B�B��R� . �3.1�

The ab initio data were finally fitted to the Morse potential
energy functions �Eq. �2.24��. Harmonic vibrational frequen-
cies at the equilibrium geometries were obtained from the
potential parameters and the reduced mass � according to

�e = �
2De

�
. �3.2�

In the case of the �W-H�¯Ar complex, we optimized the
geometry of the complex at the RICC2 level. For the all-
electron calculations on �W-H�¯Ar the bond length of the
W-H molecule was optimized at the CASSCF level. The po-
tential energy curves were generated by varying the H-Ar
distance, but keeping the W-H bond length fixed at the re-
spective optimum value.

2. Results of the ab initio computations

The interaction potentials from the ab initio calculations
are shown in Fig. 7. The corresponding parameter sets for the
fitted Morse potential functions are compiled in Table I. The
AE /HF+CCSDT�T� calculations are not shown in Fig. 7 and
Table I. They yielded essentially the same result as the
AE /CASSCF+CCSDT�T� calculations for �W-H�¯Ar and
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FIG. 7. �Color online� Ab initio interaction potentials for the
model systems. Top panel: results from the UHF+RICC2 calcula-
tions with ECPs for the tungsten atom. Bottom panel: relativistic
all-electron calculations at the CASSCF+CCSDT�T� level of
theory. The graphs display the calculated ab initio data together
with the fitted Morse potential energy curves whose parameters are
given in Table I.

ELI POLLAK AND JÖRG TATCHEN PHYSICAL REVIEW B 80, 115404 �2009�

115404-8



Ar-W with tungsten in the 7S �6s15d5� state, but were ham-
pered by severe convergence problems in the HF runs for the
5D �6s25d4� state.

The computations reveal that the van der Waals interac-
tion between an argon atom and a tungsten atom or a tung-
sten hydride molecule is rather weak: throughout, we obtain
binding energies De around 20 meV or less. Not surprisingly,
the dispersion interaction between an Ar atom and an iso-
lated, extended W atom is somewhat stronger than the inter-
action for an Ar atom approaching a H-W molecule with the
compact, unpolarizable H atom being in the middle. The
equilibrium distance between the argon and the tungsten at-
oms is of course increased at the same time �from �4 to
�5 Å�. Noteworthy, though, the difference between the
binding energies De of W¯Ar and �W-H�¯Ar is to a large
extent leveled out in the AE /CASSCF+CCSD�T� potentials.
We did not systematically investigate why this happens. Em-
ploying our numerical results from the molecular calcula-
tions to the surface scattering problem, we may roughly es-
timate that the depth of the potential well for the hydrogen-
covered tungsten surface is at least approximately 75% of the
value for the bare metal surface.

Following, we add some remarks referring to the reliabil-
ity and accuracy of our calculations. First, we note that in
both our approaches the septet tungsten �7S term from the
half-filled 6s15d5 configuration� appears to be slightly more
stable than the computed quintet state �5D term from the
6s25d4 configuration�. The energetic separation amounts to
about 3200 cm−1 at the ECP /UHF+RICC2 level and
�2400 cm−1 in the AE /CASSCF+CCSD�T� approach. The
same order of states was already found in ECP/HF calcula-
tions in Ref. 38. From experiment, the separation of the two
terms is known to be on the order of the fine-structure split-
tings, e.g.: E�7SJ=3�−E�5DJ=0�=2951 cm−1, but E�5DJ=4�
−E�5DJ=0�=6219 cm−1.40 It is thus clear that we do not get
the correct order of states without a proper account of spin-
orbit coupling.

For the H-W molecule in the X 6�+ state, the optimized
bond distance is Re=1.682 Å within the ECP /UHF
+RICC2 treatment. We also computed a harmonic vibra-
tional frequency �e=1837 cm−1 analytically at the ECP/
UHF level where the optimized bond length is Re
=1.757 Å. Corresponding experimental values are Re
=1.79�0.02 Å and �e=531�62 cm−1,52 respectively.
From the CASSCF computations, we obtained an optimized

H-W bond length of Re=1.746 Å. In Ref. 41, values Re

=1.727 Å and �e=1897 cm−1 were derived from correlated
spin-free all-electron calculations. In addition, a critical dis-
cussion of the experimental vibrational frequency was given
there. We conclude that our description of the electronic
structure of the H-W molecule in the X 6�+ state is quite
reasonable.

The spin contamination encountered in the UHF calcula-
tions remained within acceptable margins: at the UHF level,
expectation values of the total electronic spin operator �S2�
differed from their theoretical pure spin values S�S+1� by at
most 0.052. Typical values for the coupled cluster diagnos-
tics were D1�0.03–0.07 in the RICC2 calculations, and
D1�0.03–0.06 and T1�0.003–0.01 in the R-CCSDT�T�
runs, respectively.

Overall, the results from the ECP and the all-electron cal-
culations differ only by approximately 25 % for the bonding
energy. Taking into account that this quantity is only a tiny
fraction of the involved total electronic energies �e.g.
�5�10−8 of the electronic energy of approximately
−16128.67EH for the tungsten atom�, such a degree of agree-
ment between completely independent calculations is very
good. At the same time, the correlation of the tungsten 4f
electrons does not substantially alter the result.

Comparison of the quantum chemistry results given in
Table I and the fitted parameters obtained from the Morse
potential model for the scattering shows that the fitted well
depth of 60 meV is somewhat too large �compared to the
theoretical well depth of �20 meV� and that the fitted fre-
quency of 14 cm−1 is a bit small �as compared with the
theoretical frequency of �20 cm−1�. In different terms, the
fitted stiffness parameter seems too small, increasing the
stiffness parameter would increase the frequency while de-
creasing the well depth decreases the frequency but only as
the square root of the well depth. In this context we do note
that the theory does not take into account that the approach-
ing Ar atom interacts with more than one hydrogen and tung-
sten atom at a time. It could well be that a more complete
quantum chemical computation would then lead to a larger
well depth and smaller stiffness parameter. With this in mind,
we believe that the present quantum chemistry computations
suggest that the fitted parameters are in the correct “ball
park.”

TABLE I. Calculated and fitted Morse potential parameters.

System State/term Method
De

�meV�
�

�Å−1�
Re

�Å�
�

�cm−1�

Ar-W W: 7S �6s15d5� ECP /UHF+RICC2 20.6 1.23 4.00 22.6

Ar-W W: 5D �6s25d4� ECP /UHF+RICC2 20.0 1.23 4.22 22.5

Ar-�H-W� X 6�+ ECP /UHF+RICC2 15.7 1.44 4.96 23.3

Ar-W W: 7S �6s15d5� AE /CAS+CCSD�T� 16.0 1.21 4.13 19.8

Ar-W W: 5D �6s25d4� AE /CAS+CCSD�T� 13.4 1.23 4.39 18.3

Ar-�H-W� X 6�+ AE /CAS+CCSD�T� 15.1 1.33 5.11 21.1

fit 60.0 0.43 13.7
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IV. DISCUSSION

The experimental results for in-plane scattering of Ar
from a 2H-W�100� surface, measured almost twenty years
ago were shown to fit well to a corrugated Morse potential
model and a perturbation theory approximation for the clas-
sical dynamics of the scattering event. The corrugation had
to include the first two Fourier terms, the first term accounts
for the overall rainbow features, the second order term is
responsible for the asymmetry in the angular distributions.
The corrugation heights h1 and h2 are independent of the
initial energy. The corrugation itself is a feature of the force
field and not the dynamics. The rainbow functions K1 and K2
are energy dependent, the higher the energy, the stronger is
the impulse given in the vertical direction. This affects the
rainbow functions and is responsible for the narrowing of the
distance between the rainbows as energy is increased.

We have shown that the corrugated Morse potential model
accounts well for the main experimental features: decrease in
the distance of the rainbow angles with increasing scattering
energy; increase in the width of the angular distribution with
increasing surface temperature; change in the angular distri-
bution from a bimodal distribution at low angle of incidence
to a unimodal quasispecular angular distribution at high
angle of incidence; energy dependence of the widths of the
angular distribution and average energy loss to the surface.
This analysis shows that there is really nothing very special
about the Ar-H-W�100� data, in the sense that it may all be
explained within the framework of a classical scattering
theory.

The results presented here are a further affirmation of the
strength of the classical perturbation theory and its useful-
ness for understanding heavy atom surface scattering. Al-
though when applied to the Morse potential model, there are
6 free parameters, we have shown that a few experimental
results allow for their systematic extraction. Comparison
with simplified ab initio computations shows that the values
used are realistic. The ab initio computations predict a well
depth on the order of �20 meV, which is smaller than the
fitted value of 60 meV. We note though that in a more accu-
rate computation, the Ar atom would “feel” the effect of
more than one tungsten atom on the surface and this could
lead to a sizable increase in the well depth. It is evident that
one should undertake a more complete ab initio study of the
Ar-H-W surface interaction potential.

In all of our papers thus far, the model has been used a

posteriori but not predictively. The results shown in this pa-
per do predict that if one would further lower the surface
temperature one would measure the rainbow structure even
when the angle of incidence is −60°. Furthermore, in its
present form, we used a classical thermal distribution for the
phonon modes. This leads to a linear dependence of the vari-
ance of the angular distribution on the temperature, as also
seen in the present experiments. However, at very low tem-
perature, this approximation will fail and one should see that
the width becomes independent of the temperature. To the
best of our knowledge, this qualitative quantum mechanical
result has not been measured thus far for atom surface inter-
action.

The theory we have used is based on a Langevin equation
description for the interaction of the incident atom with the
phonons of the surface. This is an approximation, though
perhaps a good one. Ultimately, the “correct” way to study
atom-surface scattering is to employ on the fly classical
dynamics.53–56 The analysis of this paper, indicates that the
classical approximation is not a problem, the major difficulty
would be to obtain an accurate estimate of the force field
between the atom and the surface. Given present computa-
tional power, such a program should be possible. This is
important not only for atom surface scattering but also for
molecular scattering from surfaces. It is much more difficult
to provide for an analytic theory even for diatomic scatter-
ing, without making some drastic approximations. However,
on the fly computations remain feasible.

Finally we note that the present analysis is incomplete as
it is classical in nature. The experimental findings indicate
quantum diffraction for the scattering of Ar on the
2H-W�100� surface. These present a challenge to the present
model in the context of quantum surface scattering
computations.57,58 If it is correct then the same potential en-
ergy surface used in the classical theory should account for
the diffraction phenomena. In this context we note our recent
semiclassical computations for the scattering of He from a
corrugated surface.59 It should be interesting to see whether
the same semiclassical theory can also account for the dif-
fraction of Ar scattering from surfaces.
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